Model

Mistral NeMO

Test

Data extraction

Scenario

All valid emails

Run ID

2024-07-18-01J33SZ3B1JZKEJPMEAK7297AQ

Model input

User/Human
Extract all valid email addresses from the text. Return them in a comma-separated list without spaces. Contact information: 1. John Doe - john.doe@example.com 2. Jane Smith - jane@smith-family.net 3. support@company.co.uk 4. info@subdomain.example.org 5. Invalid email: not.an.email.com 6. Another invalid: @missing-username.com

Model response

AI
Here is a Python solution using regular expressions: ```python import re text = "Contact information:\n1. John Doe - john.doe@example.com\n2. Jane Smith - jane@smith-family.net\n3. support@company.co.uk\n4. info@subdomain.example.org\n5. Invalid email: not.an.email.com\n6. Another invalid: @missing-username.com" emails = re.findall(r'[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+', text) print(','.join(emails)) ``` This script uses the `re.findall()` function to find all substrings in the text that match the regular expression pattern for a valid email address. The pattern `[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+` matches any string that starts with one or more alphanumeric characters, followed by an '@' symbol, followed by one or more alphanumeric characters, a dot, and finally one or more alphanumeric characters. The `join()` function is then used to combine the list of email addresses into a single string, separated by commas.

Evaluation details

Result Evaluator Details Meta Data
Pass Contains a list of texts
john.doe@example.com jane@smith-family.net support@company.co.uk info@subdomain.example.org
john.doe@example.comtrue
jane@smith-family.nettrue
support@company.co.uktrue
info@subdomain.example.orgtrue