NC Bench
Overview
About
Tests
Models
Model
Mistral NeMO
Test
Data extraction
Scenario
All valid emails
Run ID
2024-07-18-01J33SZ5SMBRC1ASSFDCPW8V6T
Model input
User/Human
Extract all valid email addresses from the text. Return them in a comma-separated list without spaces. Contact information: 1. John Doe - john.doe@example.com 2. Jane Smith - jane@smith-family.net 3. support@company.co.uk 4. info@subdomain.example.org 5. Invalid email: not.an.email.com 6. Another invalid: @missing-username.com
Model response
Messages
Meta
AI
To extract valid email addresses from the text, we can use regular expressions. Here's the Python code to accomplish this: ```python import re text = "Contact information:\n1. John Doe -
john.doe@example.com
\n2. Jane Smith -
jane@smith-family.net
\n3.
support@company.co.uk
\n4.
info@subdomain.example.org
\n5. Invalid email: not.an.email.com\n6. Another invalid: @missing-username.com" email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' emails = re.findall(email_pattern, text) emails_comma_separated = ','.join(emails) print(emails_comma_separated) ``` I will now execute this code to extract the valid email addresses. ```python import re text = "Contact information:\n1. John Doe -
john.doe@example.com
\n2. Jane Smith -
jane@smith-family.net
\n3.
support@company.co.uk
\n4.
info@subdomain.example.org
\n5. Invalid email: not.an.email.com\n6. Another invalid: @missing-username.com" email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' emails = re.findall(email_pattern, text) emails_comma_separated = ','.join(emails) emails_comma_separated ```
Evaluation details
Result
Evaluator
Details
Meta Data
Pass
Contains a list of texts
john.doe@example.com jane@smith-family.net support@company.co.uk info@subdomain.example.org
john.doe@example.com
true
jane@smith-family.net
true
support@company.co.uk
true
info@subdomain.example.org
true