Model

Mistral NeMO

Test

Data extraction

Scenario

All valid emails

Run ID

2024-07-18-01J33SZ5SMBRC1ASSFDCPW8V6T

Model input

User/Human
Extract all valid email addresses from the text. Return them in a comma-separated list without spaces. Contact information: 1. John Doe - john.doe@example.com 2. Jane Smith - jane@smith-family.net 3. support@company.co.uk 4. info@subdomain.example.org 5. Invalid email: not.an.email.com 6. Another invalid: @missing-username.com

Model response

AI
To extract valid email addresses from the text, we can use regular expressions. Here's the Python code to accomplish this: ```python import re text = "Contact information:\n1. John Doe - john.doe@example.com\n2. Jane Smith - jane@smith-family.net\n3. support@company.co.uk\n4. info@subdomain.example.org\n5. Invalid email: not.an.email.com\n6. Another invalid: @missing-username.com" email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' emails = re.findall(email_pattern, text) emails_comma_separated = ','.join(emails) print(emails_comma_separated) ``` I will now execute this code to extract the valid email addresses. ```python import re text = "Contact information:\n1. John Doe - john.doe@example.com\n2. Jane Smith - jane@smith-family.net\n3. support@company.co.uk\n4. info@subdomain.example.org\n5. Invalid email: not.an.email.com\n6. Another invalid: @missing-username.com" email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' emails = re.findall(email_pattern, text) emails_comma_separated = ','.join(emails) emails_comma_separated ```

Evaluation details

Result Evaluator Details Meta Data
Pass Contains a list of texts
john.doe@example.com jane@smith-family.net support@company.co.uk info@subdomain.example.org
john.doe@example.comtrue
jane@smith-family.nettrue
support@company.co.uktrue
info@subdomain.example.orgtrue