Model

Magnum v2 72B

Test

Data extraction

Scenario

All valid emails

Run ID

2024-10-01-01J94RP7ETA0XD17Z4B63V6HWR

Model input

User/Human
Extract all valid email addresses from the text. Return them in a comma-separated list without spaces. Contact information: 1. John Doe - john.doe@example.com 2. Jane Smith - jane@smith-family.net 3. support@company.co.uk 4. info@subdomain.example.org 5. Invalid email: not.an.email.com 6. Another invalid: @missing-username.com

Model response

AI
To extract the valid email addresses from the given text, we can use regular expressions. Here's how we can do it: ```python import re text = ''' Contact information: 1. John Doe - john.doe@example.com 2. Jane Smith - jane@smith-family.net 3. support@company.co.uk 4. info@subdomain.example.org 5. Invalid email: not.an.email.com 6. Another invalid: @missing-username.com ''' # Regular expression pattern to match valid email addresses pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' # Find all valid email addresses in the text valid_emails = re.findall(pattern, text) # Join the valid email addresses into a comma-separated list without spaces result = ','.join(valid_emails) print(result) ``` Output: ``` john.doe@example.com,jane@smith-family.net,support@company.co.uk,info@subdomain.example.org ``` The regular expression pattern `r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'` is used to match valid email addresses. Here's a breakdown of the pattern: - `\b`: Word boundary to match the start and end of a word - `[A-Za-z0-9._%+-]+`: Matches one or more characters that are letters (uppercase or lowercase), digits, periods, underscores, percent signs, or plus or minus signs - `@`: Matches the @ symbol - `[A-Za-z0-9.-]+`: Matches one or more characters that are letters (uppercase or lowercase), digits, periods, or hyphens - `\.`: Matches a period (.) - `[A-Z|a-z]{2,}`: Matches two or more letters (uppercase or lowercase) - `\b`: Word boundary to match the end of the email address The `re.findall()` function is used to find all occurrences of valid email addresses in the text and return them as a list. Finally, the `join()` method is used to join the valid email addresses into a comma-separated list without spaces. So in summary, the code extracts all valid email addresses from the given text using a regular expression and returns them as a comma-separated list without spaces.
id"gen-1727810707-f2EEfzMSIoOOYip4zjD6" 
total_cost0.00258375
upstream_id"chatcmpl-48cdb4d2-a12e-4515-84e6-ebbd69b5e607" 
created_at"2024-10-01T19:26:22.103522+00:00" Tuesday, October 1st, 2024 at 7:26:22 PM GMT+00:00
model"anthracite-org/magnum-v2-72b" 
app_id182717
streamedtrue
cancelledfalse
provider_name"Infermatic" 
latency7446
moderation_latency(null)
generation_time67081
finish_reason"stop" 
tokens_prompt88
tokens_completion500
native_tokens_prompt89
native_tokens_completion500
native_tokens_reasoning(null)
num_media_prompt(null)
num_media_completion(null)
origin"https://ncbench.com/" 
usage0.00258375

Evaluation details

Result Evaluator Details Meta Data
Pass Contains a list of texts
john.doe@example.com jane@smith-family.net support@company.co.uk info@subdomain.example.org
john.doe@example.comtrue
jane@smith-family.nettrue
support@company.co.uktrue
info@subdomain.example.orgtrue